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Abstract This paper addresses the problem of minimizing an arbitrary finite sum of prod-
ucts of two convex functions over a convex set. Nonconvex problems in this form constitute a
class of generalized convex multiplicative problems. Convex analysis results allow to refor-
mulate the problem as an indefinite quadratic problem with infinitely many linear constraints.
Special properties of the quadratic problem combined with an adequate outer approxima-
tion procedure for handling its semi-infinite constrained set enable an efficient constraint
enumeration global optimization algorithm for generalized convex multiplicative programs.
Computational experiences illustrate the proposed approach.

Keywords Global optimization · Multiplicative programming · Convex analysis ·
Indefinite quadratic programming · Numerical methods

1 Introduction

This paper is concerned with the problem of minimizing an arbitrary finite sum of products of
two convex functions over a convex set. Nonconvex problems in this form constitute a class
of generalized convex multiplicative problems. In convex multiplicative programming one is
interested in obtaining globally optimal solutions for the nonconvex problem of minimizing
an arbitrary finite product of convex functions over a convex set [14]. A traditional technique
in multiplicative programming is to project the multiplicative problem in the outcome space,
that is, in the real space where the vector of convex functions that constitute the multiplicative
objective has its image.
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A number of different approaches for solving generalized multiplicative problems in the
outcome space have been proposed. An outcome space approach for minimizing sums or
products of ratios of linear functions is presented in [6] and [7]. The outcome space is
defined by a mapping that associates to each original ratio a new variable. Upper and lower
bounds on the optimal solution of the nonconvex problem are obtained by solving a sequence
of linear programming subproblems.

Outer approximation is also employed in [16], which extends the multiplicative program-
ming approach introduced in [18] to the minimization of an arbitrary finite sum of products
of two convex functions. By transforming the original objective the authors obtain and solve
an equivalent concave minimization problem by a cutting plane algorithm. The parametric
transformation proposed in [18] is extended in [11] to the minimization of the sum of a con-
vex function and an arbitrary finite product of convex functions. This particular generalized
multiplicative problem is rewritten as a quasiconcave minimization problem and solved by
a conical branch-and-bound algorithm.

Some generalized convex multiplicative formulations are closely related to generalized
fractional programming [27]. Generalized linear multiplicative and fractional programming
problems are tackled in [13] using a precursor of the parametric transformation introduced
in [18]. A parametric simplex algorithm for generalized linear fractional programming is
proposed in [15]. A specialization for generalized linear fractional problems of the algorithm
derived in [16] is carried out in [17].

Branch-and-bound techniques are also traditional in the field of generalized multiplicative
programming. Affine and generalized affine multiplicative problems are treated in [26] by
using a combination of a lower bounding procedure proposed by the authors in [25] and a new
branching scheme. Branch-and-bound is used in [2] for globally minimizing a sum of ratios
of nonlinear functions in its equivalent outcome space formulation. A simplicial branch-and-
bound algorithm for minimizing the sum of ratios of linear functions is presented in [3].
A rectangular branch-and-bound algorithm for the global maximization of generalized con-
cave multiplicative functions has been recently proposed in [4].

An extension of the outcome space convex multiplicative programming approach pro-
posed in [21] is presented in this paper. As in [21] convex analysis results are used for
outer approximating generalized convex multiplicative programs. However, the proposed
extension introduces a remarkable difficulty. Whereas in the purely multiplicative case the
coordination problem relies on solving a linearly constrained quasiconcave global minimi-
zation problem by vertex enumeration, in the generalized case the coordination demands the
global solution of a linearly constrained indefinite quadratic problem. Despite its apparent
difficulty, it is shown that characteristics such as small number of variables (when the prob-
lem is represented in the outcome space), small number of linear constraints (as the result
of an effective outer approximation scheme), and a special property of the quadratic form,
render the global solution of the coordination problem efficient by constraint enumeration.
An additional geometric property and bounds on the ε-optimal solutions obtained by the
proposed global optimization algorithm are also introduced.

The paper is organized as follows. In Sect. 2 the formulation and relevance of the intended
class of generalized convex multiplicative problems are briefly discussed. In Sect. 3 the prob-
lem is reformulated in the outcome space as an indefinite quadratic problem with infinitely
many linear constraints. Some aspects of the outer approximation scheme for solving the
problem in the outcome space are detailed in Sect. 4 Computational experiences are devel-
oped and analysed in Sect. 5. Conclusions are presented in Sect. 6.
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Notation. The set of all n-dimensional real vectors is represented as R
n . The sets of all

nonnegative and positive real vectors are denoted as R
n+ and R

n++, respectively. Inequalities
are meant to be componentwise: given x, y ∈ R

n , then x ≥ y (x − y ∈ R
n+) implies xi ≥

yi , i = 1, 2, . . . , n. Accordingly, x > y (x − y ∈ R
n++) implies xi > yi , i = 1, 2, . . . , n.

The standard inner product and the Euclidean norm in R
n are denoted as 〈x, y〉 and ‖x‖,

respectively. The subset of boundary points of � ⊂ R
n is denoted as ∂�. If f : R

n → R
m

is defined on �, then f (�) := { f (x) : x ∈ �}. The symbol := means equal by definition.

2 Problem statement and overview

Consider the generalized convex multiplicative problem

(PM)

∣
∣
∣
∣
∣
∣
∣

minimize v(x) = f1(x) +
r

∑

i=1

f2i (x) f2i+1(x)

subject to g j (x) ≤ 0, j = 1, 2, . . . , p,

where fi : R
n → R (i = 1, 2, . . . , 2r + 1) and g j : R

n → R ( j = 1, 2, . . . , p) are convex
functions. As usual it is assumed that

� := {x ∈ R
n : g j (x) ≤ 0, j = 1, 2, . . . , p} (1)

is a nonempty compact (convex) subset of R
n and that each fi is positive over �. Formulation

(PM) is representative of important mathematical programming problems. Given a quadratic
objective function v(x) = (1/2)〈x, Qx〉+〈c, x〉, where c ∈ R

n and Q ∈ R
n×n has rank equal

to r ≤ n, there exist linearly independent sets of n-dimensional vectors, {c1, c2, . . . , cr } and
{d1, d2, . . . , dr }, such that

v(x) = 〈c, x〉 +
r

∑

i=1

〈ci , x〉〈di , x〉.

See [28] for a comprehensive discussion about decomposition of quadratic and bilinear forms
that rely on the formulation (PM).

The problem of minimizing a sum of ratios is another important application of generalized
multiplicative programming. Suppose that f1, f2, . . . , fr are convex and h1, h2, . . . , hr are
concave positive functions over � ⊂ R

n . Then each 1/hi (x) is convex and positive over �

and the fractional problem

(PR)

∣
∣
∣
∣
∣
∣
∣

minimize v(x) =
r

∑

i=1

fi (x)/hi (x)

subject to x ∈ �

reduces to (PM). Problem (PR) includes the case where one or more ratios are not proper (that
is, hi (x) = 1 for some i), which describes the situation where the objective is to minimize a
sum of absolute and relative terms.

Examples of algorithms that address problem (PR) are found in [13] (for the case of linear
ratios) and [2] (for the case of nonlinear ratios). Applications of fractional programming
which rely on problems of the form (PR) are surveyed in [27]. In particular, if each ratio
fi/hi is a risk/profit measure, then by solving (PR) one seeks a compromise solution for a
(possibly weigthed) sum of risk-profit ratios. The nonlinear programming approach proposed
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in [23] for the synthesis of heat exchanger networks also relies on problems of the form (PR),
with each fi/hi being described by a linear fractional function and � by linear constraints.

A rectangular branch-and-bound algorithm for the problem of maximizing a generalized
concave multiplicative function in the form considered in (PM) has been recently proposed
in [4]. It is worth observing that the problem considered in [4] is not equivalent to (PM).

The objective function in (PM) can be written as the composition v(x) = u( f (x)), where
u : R

m → R, m = 2r + 1, defined by

u(y) := y1 +
r

∑

i=1

y2i y2i+1, (2)

is viewed as a particular aggregating function for the problem of minimizing the vector-
valued objective f := ( f1, f2, . . . , fm) over � [29]. The outcome space associated with
problem (PM) is the projection of � onto R

m under f :

Y := f (�). (3)

A solution x� ∈ � is an efficient solution of the multiplicative (multiobjective) problem
(PM) if there exists no other x ∈ � such that f (x) ≤ f (x�) and f (x) 	= f (x�). The set of
all efficient solutions of (PM) is denoted as effi(�). The positiveness of f over � implies
that u is strictly increasing on Y and, in consequence, that any optimal solution of (PM) is
efficient.

It is known from the multiobjective programming literature [29] that if x ∈ � is an effi-
cient solution of (PM) then there exists w ∈ R

m+ such that x is also an optimal solution of the
convex programming problem

(PW )

∣
∣
∣
∣

minimize 〈w, f (x)〉
subject to x ∈ �.

Conversely, let x(w) denote any optimal solution of (PW ), given w ∈ R
m+. Then x(w) is

efficient if w ∈ R
m++. By defining

W :=
{

w ∈ R
m+ :

m
∑

i=1

wi = 1

}

, (4)

the efficient set effi(�) can be generated by solving (PW ) over W . The characterization of
optimal solutions of (PM) as efficient solutions of its multiobjective programming counterpart
has been explored in the convex multiplicative programming literature [1,12,21].

3 Outcome space formulation of (PM)

The outcome space formulation of (PM) is

(PY )

∣
∣
∣
∣
∣
∣
∣

minimize u(y) = y1 +
r

∑

i=1

y2i y2i+1

subject to y ∈ Y,

where Y is defined by (3).
The continuity of f and the compactness of � imply the compactness of Y . Although the

convexity of f and � do not entail the convexity of Y , they do entail the connectedness of

123



J Glob Optim (2010) 47:107–118 111

Y by arcs: if y1, y2 ∈ Y , then there exist x1, x2 ∈ � such that y1 = f (x1), y2 = f (x2) and
the continuous mapping f satisfies f (αx1 + (1 − α)x2) ∈ Y for all α ∈ [0, 1] [24].

The set of all efficient solutions in the outcome space is effi(Y) = f (effi(�)). It is readily
seen that if y ∈ effi(Y) then y ∈ ∂Y . A practical representation of problem (PY ) is introduced
in Theorem 1 on the basis of the following Lemma.

Lemma 1 Given y ∈ R
m, the system of inequalities f (x) ≤ y has a solution x ∈ � if and

only if y satisfies

〈w, y〉 ≥ min
x∈�

〈w, f (x)〉 for all w ∈ W.

Proof See, for example, [19]. 
�
Theorem 1 Let y� be an optimal solution of the problem

(PF )

∣
∣
∣
∣
∣
∣
∣

minimize u(y) = y1 +
r

∑

i=1

y2i y2i+1

subject to y ∈ F,

where

F :=
{

y ≤ y ≤ y : 〈w, y〉 ≥ min
x∈�

〈w, f (x)〉 for all w ∈ W
}

(5)

and

y
i
:= min

x∈�
fi (x) > 0 and yi := max

x∈�
fi (x), i = 1, 2, . . . , m. (6)

Then y� is also an optimal solution of (PY ). In addition, y� ∈ effi(Y).

Proof As any y = f (x), x ∈ �, is feasible for (PF ), the feasible set of (PF ) contains the
feasible set of (PY ) and the optimal value of (PF ) is a lower bound for the optimal value of
(PY ). If y� solves (PF ), then by Lemma 1 there exists x� ∈ � such that f (x�) ≤ y� and,
actually, f (x�) = y�. Otherwise ( f (x�) ≤ y� and f (x�) 	= y�), the feasibility of f (x�)

for (PF ) and the positivity of u on F would contradict the optimality of y�. Since f (x�) is
feasible for (PY ), one concludes that y� also solves (PY ). The existence of another optimal
solution y0 such that y0 ≤ y� and y0 	= y� would contradict again the optimality of y�.
Consequently, y� ∈ effi(Y). 
�

Differently from (PY ), problem (PF ) exhibits a convex feasible set. On the other hand,
(PF ) falls in the category of semi-infinite programming problems, as its feasible set includes
a semi-infinite linear inequality system. Relaxation is a possible solution strategy in such
context.

Generally speaking, relaxation consists in temporarily dropping all but a few constraints
and solve a relaxed problem. If the relaxed problem is infeasible, so is the original. If an
optimal solution of the relaxed problem satisfies all ignored constraints, the solution is also
optimal for the original problem. If not, one or more violated constraints are incorporated
into the previous constrained set and the procedure is repeated.

According to the relaxation procedure proposed in this paper only the most violated con-
straint of the semi-infinite linear inequality system in F is incorporated into the previous
constrained set. The most violated constraint is determined by computing

θ(y) := max
w∈W

φy(w), (7)
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where

φy(w) := min
x∈�

〈w, f (x) − y〉. (8)

Then y satisfies the semi-infinite inequality system if and only if θ(y) ≤ 0. Otherwise the
maximizer on the right-hand side of (7) characterizes the most violated constraint.

The functions θ and φy exhibit a number of useful properties [21]. The function φy is con-
cave over W and therefore θ(y) in (7) [respectively, φy(w) in (8)] is computed by solving a
concave (respectively, convex) programming problem. The function θ is convex (and hence,
continuous) over R

m .
Concave programming problems of the form (7) and (8) can be efficiently tackled by the

tangential approximation (linear programming) method discussed in [19] or by more sophis-
ticated implementations of dual methods surveyed in [5]. The computational results reported
in Sect. 5 were obtained by using the tangential approximation method.

An additional geometric property of θ is derived below.

Theorem 2 θ(y), y ∈ R
m, is the optimal value of the convex programming problem

∣
∣
∣
∣
∣
∣

minimize σ

subject to f (x) ≤ σe + y,

x ∈ �,

(9)

where σ ∈ R and e ∈ R
m is the vector of ones.

Proof The dual problem of (9) is

maximize
w∈R

m+
min

x∈�,σ∈R

{σ + 〈w, f (x) − σe − y〉}, (10)

where w ∈ R
m+ is the vector of dual variables attached to the inequality constraints. The

existence of the minimum imposes that
∑m

i=1 wi = 1, and (10) reduces to

maximize
w∈W

min
x∈�

〈w, f (x) − y〉, (11)

whose optimal value is θ(y). Since the primal problem (9) is convex, under mild constraint
qualification assumptions [5] there is no duality gap and problems (9) and (11) have the same
optimal value, θ(y). 
�

Theorem 2 enables the following geometric interpretation of θ(y) for some y ∈ R
m .

Let (x�, w�) be primal and dual optimal solutions of problem (9). By Theorem 2, f (x�) ≤
θ(y)e + y, and if w� ∈ R

m++ then the inequality becomes an equality. The case θ(y) > 0 is
more relevant for the analysis because the relaxation algorithm proposed in Sect. 4 generates
a sequence of infeasible points (y 	∈ F) converging to an optimal solution of (PF ). In this
case θ(y) is numerically equal to the infinity norm between y and F .

4 Solving (PF ) by relaxation

Consider the initial polytope F0 := {y ∈ R
m : y ≤ y ≤ y}, where y and y are defined by

(6). While obtaining y involves solving m convex programs, obtaining y requires m convex
maximizations. Although y could be determined by effective global optimization methods
[10], the simpler strategy of making y large enough in order that F0 contains an optimal
solution of (PM ) has been adopted.
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The minimum of u over F0 is attained at y0 = y and, by using (7), one generally con-

cludes that θ(y0) > 0, that is, y0 is not feasible for (PF ). A side information derived from
the computation of θ(y0) is the constraint of (PF ) that y0 most violates,

H0+ := {y ∈ R
m : 〈w0, y〉 ≥ 〈w0, f (x(w0))〉}. (12)

The positive half-space H0+ supports F at y = f (x(w0)) (because f (x(w0)) ∈ F and F
is contained in H0+). The deepest cut produced by H0+ in F0 generates the improved outer
approximation of F described by F1 = H0+ ∩ F0. The minimizer y1 of u subject to y ∈ F1

will be generally such that θ(y1) > 0 and an additional constraint H1 on y, the most violated
by y1, is incorporated into the relaxed problem. The repeated application of the previous
steps leads to a global optimization algorithm for solving (PF ).

Algorithm A1

Step 0: Find F0 and set k := 0;
Step 1: Solve the generalized multiplicative problem

(PFk )

∣
∣
∣
∣
∣
∣
∣

minimize u(y) = y1 +
r

∑

i=1

y2i y2i+1

subject to y ∈ Fk,

obtaining yk ;
Step 2: Find θ(yk) by solving the maxmin subproblem (7) and (8). If θ(yk) < ε, where

ε > 0 is a small tolerance, stop: yk and x(wk) are ε-optimal solutions of (PF ) and
(PM), respectively. Otherwise, define

Fk+1 := {y ∈ Fk : 〈wk, y〉 ≥ 〈wk, f (x(wk))〉},
set k := k + 1 and return to Step 1.

The proof of infinite convergence (ε = 0) of algorithm A1 to a global minimizer of (PF )
is essentially the same provided in [21] for convex multiplicative problems: any subsequence
{ykl } of {yk} is such that θ(ykl ) tends to 0 as l tends to ∞. Additionally, it is readily seen that
given ε > 0 the algorithm terminates after finitely many iterations.

The quality of the ε-optimal solution yε at convergence of algorithm A1 can be evaluated
as follows. If u� denotes the optimal value of (PF ) (and (PM)), then

yε
1 +

r
∑

i=1

yε
2i yε

2i+1 ≤ u� ≤ f (xε) +
r

∑

i=1

f2i (xε) f2i+1(xε).

The first inequality derives from the fact that yε is a global minimizer of an outer approx-
imation of (PF ). The second one is due to the feasibility of the corresponding xε for (PM).
By using Theorem 2, the upper bound on u� can be expressed as a function of ε:

u� ≤ (

yε
1 + θ(yε)

) +
r

∑

i=1

(

yε
2i + θ(yε)

) (

yε
2i+1 + θ(yε)

)

≤ (

yε
1 + ε

) +
r

∑

i=1

(

yε
2i + ε

) (

yε
2i+1 + ε

)

.

The lower and upper bounds converge to u� as ε tends to 0. The upper bound is more accu-
rate when wε ∈ R

m++, where wε is the maximizer of φyε over W and, by Theorem 2, the dual
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variables vector of (9). In this case one must have fi (xε) = yε
i + θ(xε) for i = 1, 2, . . . , m,

because all inequality constraints in (9) will be active. Theorem 2 and its geometric inter-
pretation at the end of Sect. 3 also provide a justification for the convergence criterion of
algorithm A1. The scalar ε > 0 establishes the maximum acceptable distance (measured by
the infinity norm) between an approximate optimal solution and a feasible point of (PF ).

4.1 Solving (PFk ) by constraint enumeration

Problem (PFk ) at Step 1 of algorithm A1 can be rewritten as a linearly constrained quadratic
programming problem of the form

(PFk )

∣
∣
∣
∣
∣
∣
∣

minimize u(y) = 1

2
yT Qy + cT y

subject to A(k)y ≥ b(k),

y ≤ y ≤ y,

where

Q :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 · · · 0 0
0 0 1 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1
0 0 0 · · · 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, cT := [

1 0 0 · · · 0 0
]

,

and A(k) ∈ R
k×m, b(k) ∈ R

k, y ∈ R
m and y ∈ R

m characterize the matrix representation

of Fk . It is readily seen that (PFk ) is an indefinite quadratic program: the characteristic
polynomial of Q is

det(λI − Q) = λ (λ2 − 1) · · · (λ2 − 1)
︸ ︷︷ ︸

r times

,

indicating that matrix Q has exactly r negative (equal to −1) and r positive (equal to 1) eigen-
values, where r is the number of products in the generalized multiplicative function. See [22]
and [8] for comprehensive analyses of indefinite quadratic programming applications and
methods. The characteristics of (PFk ) favour the application of the constraint enumeration
method, discussed in details in [9] and [10].

It is known that an optimal solution of (PFk ) occurs at the boundary of Fk and can be
found by constraint enumeration [10]. The number of constraints of (PFk ) is 2m + k, where
m is the number of functions in the generalized multiplicative objective and k is the current
number of (deepest) cuts generated by algorithm A1.

In principle there are 22m+k ways of enumerating the constraints of (PFk ), each one lead-
ing to a Karush-Kuhn-Tucker system solved in at most O((3m + k)3) arithmetic operations
[10]. However, since the lower and upper bound constraints of any component of y can not
be active at the same time, the number of possible combinations is smaller. In addition, only
subsets of at least r constraints need to be checked.

Theorem 3 At least r of the constraints are active at any (local) global solution point of
(PFk ).

Proof See [9]. 
�
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When a new constraint is incorporated into Fk , only combinations of at least r constraints
that include the new one need to be investigated. The reason is that the optimal solution of PFk

must have been declared infeasible, that is, it does not solve the generalized multiplicative
problem. Supposing that algorithm A1 converges after N iterations, it is possible to show that
the latter property avoids considering 2N combinations. Computational experiences reported
in Sect. 5 indicate that N is usually small, which enables an efficient resolution of PFk by
constraint enumeration.

5 Computational experiences

Consider the illustrative example discussed in [16], where an alternative algorithm for gener-
alized convex multiplicative programming is developed and tested. (The method derived in
[16] transforms (PM) into a concave minimization problem, which is consistent with the fact
that indefinite quadractic problems can be formulated and solved by concave minimization.
See [22].) The data involved are: n = 2, p = 5, r = 2 and

f1(x) = 3x1 − 4x2 + 15, f2(x) = x1 + 2x2 − 1.5, f3(x) = 2x1 − x2 + 4,

f4(x) = x1 − 2x2 + 8.5, f5(x) = 2x1 + x2 − 1,

g1(x) = 5x1 − 8x2 ≥ −24, g2(x) = 5x1 + 8x2 ≤ 44,

g3(x) = 6x1 − 3x2 ≤ 15, g4(x) = 4x1 + 5x2 ≥ 10, g5(x) = x1.

It can be shown that f1, f2, f3, f4 and f5 are positive over �. Letting, as in [16], y =
(3, 1, 1, 2, 2) and y = (22.5, 9, 9, 11, 11), one obtains the results reported in Table 1.

Algorithm A1 converged after only two iterations to the global optimal solution x� =
(0, 3), the same found in [16] (in an unspecified number of iterations).

The main objective of this section is to investigate the computational performance of the
proposed global optimization algorithm. More extensive tests were conducted on the basis
of the following class of generalized multiplicative problems:

(PM)

∣
∣
∣
∣
∣
∣
∣

minimize 〈c1, x〉 + 1

2
xT CT Cx +

r
∑

i=1

〈c2i , x〉〈c2i+1, x〉
subject to Ax ≥ b, x ∈ R

n+,

where A ∈ R
p×n, b ∈ R

p, C ∈ R
n×n and ci ∈ R

n, i = 1, 2, . . . , m, are constant matrices
with pseudo-randomly entries generated in the interval [0, 100].

Algorithm A1 was coded in MATLAB (V. 6.1)/Optimization Toolbox (V. 2.1.1) [20]
and runs on a Pentium IV, 2.4GHz, 512MB RAM personnal computer. The tolerance for
convergence was fixed at ε = 10−5.

The following indices characterize the performance of algorithm A1: W, number of con-
vex minimizations needed for solving the maxmin subproblem (7) and (8); C , number of
cuts needed for convergence; T , CPU time (in seconds).

Table 1 Convergence of
Algorithm A1

k yk wk x(wk ) θ(yk )

0 (3,1,1,2,2) (0.3333,0.6667,0,0,0) (0,2) 2.3333

1 (3,3,1,9,2) (1,0,0,0,0) (0,3) 0.0000
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Table 2 Average values of W , C and T for r = 1

n 20 20 50 50 100 100 150
p 10 30 30 70 70 130 130

C 3.36 (0.67) 3.11 (0.78) 13.50 (5.27) 14.90 (3.48) 15.88 (0.33) 15.70 (0.48) 15.30 (0.48)

W 14.54 (4.03) 14.33 (4.92) 22.20 (4.23) 25.70 (1.16) 25.02 (2.12) 25.70 (2.01) 24.90 (0.98)

T 0.39 (0.14) 0.45 (0.15) 75.45 (38.77) 86.04 (29.05) 98.32 (14.29) 92.42 (21.50) 95.16 (22.27)

Table 3 Average values of W , C and T for r = 2, 3

r 2 2 2 3 3 3
n 20 50 50 20 50 50
p 30 30 70 30 30 70

C 11.30 (2.21) 12.10 (0.32) 11.90 (0.32) 8.40 (0.52) 8.25 (0.46) 8.33 (0.46)

W 34.20 (5.14) 41.70 (5.92) 44.90 (5.57) 39.60 (7.39) 58.37 (9.85) 70.88 (11.95)

T 57.78 (19.73) 67.42 (1.68) 70.33 (5.57) 74.14 (18.30) 77.64 (16.12) 82.64 (17.28)

Ten problems for selected combinations of n (number of variables) and p (number of
constraints) were solved. Average and standard deviation values (in parenthesis) of C , W
and T are presented.

Table 2 reports the results of algorithm A1 for r = 1. On average problem PW has to
be solved W times in order to produce C deepest cuts, but the effort spent in this task is
worthwhile: the number of constraints involved in the enumeration procedure of Step 1 is
kept small.

Instances with r = 1 may be difficult to solve because the indefinite matrix Q must have
exactly one negative eigenvalue when the global minimum occurs at an interior point of a
face of Fk [22].

A critical parameter for evaluating the performance of generalized multiplicative program-
ming algorithms is the number of products in the objective function. The results of algorithm
A1 for r = 2 and r = 3 are presented in Table 3.

Tables 2 and 3 show that n and p have little influence on C , the number of cuts generated
by the algorithm in the outcome space, and a substantial influence on W (and consequently
on T ) because W is related to the resolution of optimization problems in R

n . Tables 2 and 3
also show that becomes increasingly more difficult to identify deepest cuts: the ratio W/C
increases as r increases. However the number of deepest cuts tends to decrease as the number
of constraints—at least r—activated by global minimizers increases.

The class of generalized multiplicative problems and test conditions under which compu-
tational experiences were conducted and reported in this section are the same established in
[16]. Since the results of Table 2 and those provided in [16] were obtained by using different
computational resources, the following relative performance measure is adopted:

τi, j := average time for n = i and p = j

average time for n = 20 and p = 10
. (13)

The growths of the computing times requirements of the algorithms are presented in
Table 4.

A comparison between the two algorithms indicates that although initially the comput-
ing time requirements of algorithm A1 grow faster due to higher computational costs for
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Table 4 Growths of computing times requirements for r = 1

τ20,30 τ50,30 τ50,70 τ100,70 τ100,130 τ150,130

Algorithm of [16] 3.800 17.40 55.80 167.0 576.4 964.4

Algorithm A1 1.154 193.5 220.6 252.1 237.0 244.0

obtaining deepest cuts and solve (PFk ) by constraint enumeration, its growth rate tends to be
substantially smaller than that exhibited by the algorithm of [16] as the number of variables
and constraints increases.

By analysing Tables 2 and 4 one observes that the average number of deepest cuts, C ,
and therefore the computational effort needed for solving (PFk ), varies substantially when
(n, p) goes from (20, 30) to (50, 30). On the other hand, C varies slowly from (50, 30) to
(150, 130), which indicates that the growth in CPU time of algorithm A1 must be associated
to a growth in CPU time for generating deepest cuts. It happens that C deepest cuts are derived
from W ordinary cuts and the difference between W and V , the average number of vertices
needed to produce cuts according to the algorithm of [16], is small when (n, p) goes from
(50, 30) to (150, 130). However, while algorithm A1 generates each ordinary cut by solving
(PW ), that is, by minimizing a convex combination of f1, f2, . . . , fm (m = 2r + 1) subject
to the constraints of (PM), each vertex generated by the algorithm of [16] requires the mini-
mization of a non-negative combination of f1, f 2

2 , . . . , f 2
m subject to the same constraints. In

the present computational experiments both programs are convex and quadratic (because f1

is quadratic and f2, f3, . . . , fm are linear functions), but the growth in the computing time
requirements for solving the former is slower as n or p increases.

The behavior observed in Table 4 tends to be even more pronounced as r increases. When
r = 3 and (n, p) = (50, 70), for example, one obtains W = 70.88 and V = 3,896.6. Under
such circumstances, the computational effort demanded by the algorithm of [16] is much
higher than that exhibited by algorithm A1.

6 Conclusions

A global optimization approach for generalized convex multiplicative programs was pro-
posed in this paper. By using convex analysis results the original problem was reformulated
in the outcome space as a linearly constrained semi-infinite equivalent problem, and then
solved through relaxation. Each relaxation—an outer approximation of the problem—was
expressed as a linearly constrained indefinite quadratic program with special characteristics.
By working exclusively with the linear inequalities (generated by maxmin subproblems) that
produce deepest cuts in the outcome space, the number of constraints needed for the con-
vergence of the algorithm was kept small and the sequence of indefinite quadratic programs
could be solved efficiently by constraint enumeration.

Computational experiences have attested the viability and efficiency of the proposed global
optimization algorithm, which is, in addition, easily programmed through standard optimi-
zation packages.

Further properties of the proposed approach as well as its extension to other classes of
multiplicative and fractional global optimization problems are under current investigation.
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